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Abstract

Recent work on the regress problem focuses on the conditions under which a propo-
sition has a well defined probability when its justification consists of an infinite linear
chain and, more recently, when it consists of an infinite cycle. It is known that these two
justification structures lead to distinct results; however, it is not clear how these struc-
tures are distinct from a graphical perspective. In this paper, emerging results from
infinite graph theory are introduced to clarify the distinction between these structures.
While an infinite chain is an in-ray in a directed graph, an infinite cycle is characterized
as a topological circle in the space formed by the underlying graph and its ends.

1 Introduction

The regress problem concerns the structure of justification for propositions that we hold,
where hold can mean know, believe, etc. Over the past decade, great strides have been made
analyzing the structure of justification mathematically and probabilistically, which we refer to
as the graphical approach. This research program began with a 2007 paper from Peijnenburg
[15] who proved that there exists a case where a proposition has a well defined unconditional
probability despite its justification consisting of an infinite1 linear chain of other propositions,
a result with consequences for critics and proponents of infinitism alike.2Further results from
Peijnenburg and Atkinson and Herzberg elaborated on the conditions where such a well
defined unconditional probability exists [2, 12, 13, 16, 17, 18].

Atkinson and Peijnenburg expand their analysis to propositions whose justification struc-
ture is either a finite or an infinite cycle of other propositions, relevant for coherentism [1].
They find that the unconditional probability of a proposition whose justification is either a
finite or an infinite cycle is almost always well defined; whereas, this is not the case with

1Unless mentioned explicitly, infinite is to be regarded as countably infinite.
2See the discussion between Carl Ginet and Peter Klein in [20] for two perspecives, against and for,

respectively, that were likely surprised by Peijnenburg’s result.
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infinite linear chains. The authors make a curious observation, where loop is used in place
of cycle:

“At first sight one might think that a nonuniform loop of infinite length cannot
really be called a loop...it seems that a real loop differs from an infinite loop.’
However, from this it does not follow that, therefore, an infinite loop is in fact an
infinite chain. Our investigation shows that such a conclusion would be unwar-
ranted . . . there are exceptional situations in which infinite nonuniform loops
and infinite nonuniform chains yield different results” [1].

In this paper, we develop the conceptual difficulties associated with infinite cycles and
introduce approaches from infinite graph theory to clarify the distinction between infinite
cycles and infinite linear chains. The paper is organized as follows. In the second section, the
graphical approach to the regress problem is introduced and its main results are surveyed.
In the third section, we illustrate how infinite cycles present conceptual difficulties from the
perspective of formal learning theory. In the fourth section, we introduce the topological
approach to infinite cycles and derive a condition to distinguish the two. In fifth section, we
extend the topological approach to directed graphs which allows us to overcome the hurdles
developed in section three. In the sixth, we conclude and offer directions for future work.

2 The Graphical Approach

Let us first introduce a common notation and terminology for graphs.3Let G = (V,E) be a
directed graph or digraph with vertex set V and edge set E. We will interpret a vertex as a
proposition and an edge as a binary relation of justification, in this case as the conditional
probability being above a threshold, i.e., xy ∈ E just in case P (x | y) > ξ, for some threshold
ξ. Observe that xy ∈ E does not imply that yx ∈ E. Note that these graphs represent the
justification structure with respect to a single proposition and not an agent’s full set of
beliefs. See [3] for an approach in this latter direction. We will refer to G′ = (V,E ′) as the
undirected graph underlying the digraph G.

Now that graphs have been introduced, we shall define properties of graphs and their
parts. We say that a path is a sequence of edges connecting a sequence of vertices. Let us say
that a finite cycle C ⊆ E is a path starting and ending at the same vertex where no other
vertex is repeated. For example, the cycle abca is the edge set {ab, bc, ca} where a, b, c ∈ V
and ab, bc, ca ∈ E. We say that the degree of a vertex x is the number of edges incident to
x. In the context of a digraph, we define the in-degree of a vertex x as the incident edges
incoming to x and the out-degree as the incident edges outgoing from x. Clearly, the degree
of a vertex is a sum of its in-degree and out-degree. Finally, we call a graph G connected
if there exists a path between any pair of vertices in the underlying graph G′ and strongly
connected if there exists a path between any pair in the digraph G.

Specific to infinite graphs, a ray is an infinite path with no vertices repeated. A ray has
one end point, where it begins, and continues indefinitely at the other end. A double ray
consists of two non-intersecting rays beginning from the same vertex. We shall introduce the
remaining machinery for infinite graphs in section four.

3The following terminology can be found in any standard graph theory textbook such as [10]
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With this in hand, let us turn to surveying results from the graphical approach, following
the presentation in [1]. Let e1, e2, e3, . . . be a sequence of propositions and suppose that
we are interested in the unconditional probability of e1. Observe that we may relate the
unconditional probabilities of en and another proposition en+1 by the law of total probability:

P (en) = P (en | en+1)P (en+1) + P (en | ¬en+1)[1− P (en+1)]. (1)

Employing the below substitutions to (1), we obtain

P (en) = P (en+1)γn + βn (2)

where
αn = P (en | en+1)

βn = P (en | ¬en+1)

γn = αn − βn.

Suppose that the structure of the justification for e1 is a finite linear chain given by e1e2e3 . . . en+1.
By iterating the recursive formula in (2), we obtain

P (e1) = P (en+1)
n∏

i=1

γi +
n∑

j=1

βj

j−1∏
k=1

γk. (3)

Notice that P (e1) is indeterminate in (3), since its value depends on P (en+1).
Suppose instead that the structure of justification is an infinite linear chain given by

e1e2e3 . . .. We can iterate the recursive formula (2) infinitely many times by taking the limit
of (3) as n grows arbitrarily large:

P (e1) = lim
n→∞

P (en+1)
n∏

i=1

γi +
∞∑
j=1

βj

j−1∏
k=1

γk. (4)

Observe that if
∏n

i=1 γi tends to zero as n grows large then P (e1) is well defined.
Turning now to cycles, suppose that the structure of the justification for e1 is a finite

cycle given by e1e2e3 . . . ene1. By iterating (2) we obtain

P (e1) = P (e1)
n∏

i=1

γi +
n∑

j=1

βj

j−1∏
k=1

γk (5)

and by rearranging terms

P (e1) =

∑n
j=1 βj

∏j−1
k=1 γk

1−
∏n

i=1 γi
. (6)

In this case, P (e1) is well defined just in case
∏n

i=1 γi is not equal to one. For the infinite
analogue in the case of cyclic justification given by the infinite cycle e1e2e3 . . . e1, we obtain

P (e1) =

∑∞
j=1 βj

∏j−1
k=1 γk

1−
∏∞

i=1 γi
. (7)
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As is the case with (6), P (e1) is well defined just in case
∏∞

i=1 γi is not equal to one.
We close this section by noting that for the unconditional probability of the proposition

of interest to be well defined infinite linear chains require
∏∞

i=1 γi to equal zero while infinite
cycles only require

∏∞
i=1 γi not equal one. 4

3 Challenging Intuitions

The prior section concludes with the result that infinite cycles and infinite linear chains are
distinct as justification structures. In this section, we offer a juxtaposition in perspective; a
conceptual difficulty is developed regarding identifying infinite cycles combinatorially with
the purpose of giving context to the quote from Atkinson and Peijnenburg in the introduction.

Suppose for a given infinite path P = p0p1p2 . . . in an infinite graph G′ we wish to
determine whether P is a ray or contains an infinite cycle. One approach to this question
is through formal learning theory, a mathematical framework relating incoming streams of
information to hypotheses to understand hypothesis complexity.5To generate an incoming
stream of information, let us imagine beginning at p1 and then moving to each subsequent
vertex in P . At each vertex, we compute the value for an encoding function f as follows:

f(pi) =

{
1, if pi = pj, for j < i

0, otherwise

This encoding function returns zero if the current vertex is unique and returns one if it is
repeated.

Let us first consider a simplified case where P is finite and we wish to determine whether
P contains a cycle. In this case, we simply check all vertices. If P contains a cycle, then
we will see a one after some finite time. On the other hand, if P does not contain a cycle,
then we will see all zeros. We can identify the hypothesis that there is a cycle with the set
of sequences of the appropriate length that contain a one; the hypothesis that there is no
cycle is the set containing only the all zero sequence.

Increasing the complexity, now suppose that P is infinite and we wish to determine
whether P contains a finite cycle. Unlike the last case, we cannot check all vertices in finite
time. Suppose P contains a finite cycle. Then after finite amount of time we will see a one.
On the other hand, if P does not contain a finite cycle, then we see only the infinite sequence
of all zeros. Note that we are not guaranteed to answer this question in finite time, only in
the limit. This formulation is similar to a hypothesis commonly found in the literature: “all
swans are white.” Suppose we observe an indefinite sequence of swans and form the encoding
function that returns zero if the swan is white and one otherwise. The hypothesis “all swans
are white” corresponds to the sequence of all zeros: 0000 · · · . Similarly, observing a non-
while swan corresponds to the set of sequences in which there is a one at some observation,
following a finite initial sequence of zeros.

The fundamental difficult arises whenever we wish to determine whether the infinite path
P contains an infinite cycle but no finite cycles. Supposing P contains an infinite cycle, we

4See the appendix of [1].
5See [14] for the standard reference and [11] for the current direction of the theory.
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Figure 1: A Double Ray graph formed by concatenation of two rays at their root vertex
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Figure 2: The one-Ladder graph formed from the Double Ray by choosing a middle
vertex and adding an edge between the vertices that are equal distance from the middle
vertex

will see infinitely many zeros followed by a one: 000 · · · 001 · · · . Otherwise, P may contain
a finite cycle, i.e., the output of the encoding function contains a one after some finite time,
or P may contain no cycles. Observe that knowing that the output converges to one is not
helpful since that would permit the existence of a finite cycle. In the language of swans, P
containing an infinite cycle is similar to the hypothesis that after observing infinitely many
white swans, we will observe a non-white swan.

To distinguish infinite cycles from infinite linear chains, we must be able to identify
infinite cycles. The approach developed in this section illustrates why this is a difficult task.

4 Simple Infinite Cycles

In this section, we shall sketch the approach to infinite cycles developed by Diestel and
collaborators. Recall that a finite cycle is a path starting and ending at the same vertex
where no other vertex is repeated. Alternatively, we say that a cycle is a connected subgraph
where no edge is repeated and each vertex has degree two. We claim that this approach is
insufficient to describe infinite cycles. Consider the Double Ray graph in Figure 1. This
graph seemingly meets the requirements: any vertex can be reached from any other vertex,
each vertex has degree two, and no edge is repeated. Surely, this does not accord with the
geometric picture of a cycle. As Diestel remarks “. . . common sense tells us that this can
hardly be right: shouldn’t cycles be round?” [8]

Observe the one-Ladder graph in Figure 2. We claim that this graph contains an infinite
cycle. Let us turn to developing a framework to make the notion of infinite cycle more precise
and thereby validate this claim. A connected component of a graph is a connected subgraph
that is maximal, i.e., adding any vertex will not preserve connectedness. We define an end
of a graph to be the set of rays that belong to the same connected component after any finite
set of vertices are removed. The Double Ray graph has two ends: one for each concatenated
ray. On the other hand, the one-Ladder graph has just one end, since there are infinitely
many rungs connecting the two rays.

We may fruitfully think of ends as points at infinity.6This is presented for the one-Ladder
graph in Figure 3. The intuition is that the vertex representing the end is a point that the
rays are converging to, so that a cycle can be formed by beginning at the far left vertex,
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Figure 3: The one-Ladder graph with its end vertex
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Figure 4: An illustration of the infinite cycle contained in the one-Ladder graph

traveling down one ray to the end and back to the far left vertex. This is illustrated in Figure
4.

All that remains is to flesh out the property that excludes the Double Ray as a cycle
but includes the one-Ladder: the degree of an end. We say that the degree of an end is
the maximum number of edge disjoint rays mutually contained in the end. Each end of the
Double Ray has degree one and the end of the one-Ladder has degree two. An infinite cycle
is then an infinite edge disjoint path where all vertices and ends have degree two.

5 Infinite Justification Structures via Graphs

To apply the approach developed in the section above to represent infinite justification
structures, we must add in the notion of directedness. Recall that in analyzing justification
graphically a directed edge is interpreted as inferential support from one proposition to
another. Let us define an in-ray as a ray in which all edges are only incoming in the
direction of the root, and an out-ray is a ray in which all edges are only outgoing in the
direction of the end. We call a ray that is neither in or out mixed. Whereas a vertex has
an in-degree and out-degree, an end has an in-degree, out-degree, and mixed-degree. Recall
that the degree of an end in the underlying graph is the maximum number of edge disjoint
rays contained in the end. By classifying those rays as in, out, or mixed, we can obtain the
corresponding directed degrees of the end.

Moreover, the directed degrees of an end may have multiple possible configurations. An
example will suffice: suppose that the lower ray of the Broken one-Ladder graph in Figure
5 is an out-ray, the upper ray is an in-ray, and the rungs go both directions. The end of
this graph has degree two; however, that may be made up of one in-ray and one out-ray or

6For a formal development of this idea and the accompanying topology see [6, 7]. Cycles then become
topological circles in the space.
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Figure 5: The Broken one-Ladder graph with its end vertex and a particular direction
configuration
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Figure 6: A directed one-Ladder graph with its end vertex and a direction configuration
representing the justification structure of an infinite cycle

two mixed-rays. Rather than being a limitation, this represents the versatility of the end
concept; we may choose the configuration that fits our needs.

Now that the relevant machinery is developed, let us turn to a graph of interest in
Figure 6. This directed one-Ladder captures the intuition of the infinite cycles discussed in
section three. Recall that infinite cycles were characterized with the encoding function f
as 000 · · · 001. With the directed one-Ladder, we can interpret the initial zeros as traveling
along the lower ray, the · · · as going to and coming from the end, and the trailing zeros
as returning to the starting vertex on the upper ray. In contrast, an infinite linear chain is
simply an in-ray. Given the degree criteria developed, we are able to distinguish between
these justification structures.

We must make note of one caveat in this analysis. To represent infinite cycles of justifica-
tion as a graph similar to the directed one-Ladder in Figure 6, we must have infinitely many
relations between propositions; otherwise, in the underlying graph, the lower and upper rays
will not belong to the same end. It is not at this moment clear what the implications of this
are. With this being said, this framework allows us to consider more complex cycles and
elements of the cycle space than have been discussed in this paper, such as those found in
[2].

6 Conclusion

Prior work in the graphical approach to the regress problem yields distinct results but not
a clear understanding of what separates infinite cycles from infinite linear chains. Through
the lens of formal learning theory, we are able to better clarify the nature of this conceptual
difficulty. By adopting the approach to infinite cycles introduced in section 4, we are able
to preserve intuitions about infinite cycles and develop a criterion between infinite cycles
and infinite linear chains based on directed degrees. Though the present methods do not
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generalize to arbitrary infinite graphs, they begin to illuminate infinite cycles and, in turn,
increase our understanding of justification structures.

There are at least two interesting directions for future research. The first is to explore
identifying infinite cycles from a learning theory perspective that goes beyond the approach
presented in section three. The second is to explore the consequences of more complex cycle
structures for the regress problem. Note that the conceptual machinery introduced in section
four by no means illustrates the depth of the topological approach to infinite cycles.
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[6] Diestel, Reinhard and Daniela Kühn (2004). “On Infinite Cycles I.” Combinatorica
24(1), 69-89.
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