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Abstract

We propose SMEB, a novel mechanism for quantifying uncertainty in private
linear query release. SMEB computes an unbiased estimate of an upper bound
on expected query error for general linear queries, given a set of initial measured
queries. We present preliminary results evaluating SMEB empirically against a
baseline error bound and show that the bound obtained from SMEB is tighter than
the baseline across a range of privacy budgets.

1 Introduction

A fundamental and practically relevant problem in differential privacy is private query release: given
a target workload of queries, release noisy answers to the target workload that approximate the true
query answers while satisfying differential privacy. A common approach to this problem for linear
queries is to answer a smaller set of queries and derive answers to the target queries. Query release
mechanisms of this sort yield unbiased answers and have simple output distributions, if the measured
queries support the target queries i.e. the target queries can be expressed as a linear combination of
measured queries. Beyond obtaining point estimates of query answers, analysts can reason about the
uncertainty of the derived answers by, for instance, bounding expected error. Moreover, such bounds
are often obtainable without additional expendature of the privacy budget.

In the case where the target queries are unsupported by the measured queries, no bounds on expected
error are known. Such bounds, however, can be useful in practice to economize the privacy budget
even at the expense of additional budget. For instance, if an analyst spends a proportion of her
remaining budget to obtain a bound on expected error, then, given that the bound is sufficiently low,
she can use the derived answers and save the remaining privacy budget for future queries.

Contributions. We propose a mechanism called SMEB which outputs an unbiased estimate of
an upper bound on the expected error for arbitrary workloads of linear queries at the expense of a
specified amount of the privacy budget, given an initial measured workload. We evaluate SMEB
empirically against a baseline error bound and show that the bound obtained from SMEB is tighter
than the baseline across a range of privacy budgets.

2 Preliminaries

Let X be a data domain with d categorical attributes such that X = X1 × · · · × Xd and attribute Xi

has ni <∞ categories. A database X is a multi-set of records from X . Let Πd
i=1ni = n be the size

of the domain. We represent dataset X by the n-length data vector x, which contains the counts in
which each element of X occurs in X . Throughout this paper, we often abuse notation by referring to
the data vector x as the database.

Linear queries are a rich class of queries which can express common data aggregations such as
histograms, marginals, and data cubes. A linear query is a vector w ∈ Rn, and the answer to w on
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database x is a linear combination of x given by wTx. A workload W is a collection of m linear
queries arranged row-wise in an m× n matrix. The answer to workload W on database x is given
by Wx. Depending on the context, we refer to a workload as either a matrix or a set of row vectors.
We can relate two workloads if the queries in the former can be expressed as linear combinations
of the queries in the latter. For workloads W,W ′, W supports W ′ if there exists real-valued weight
matrix V of appropriate dimension such that W ′ = VW . If W does not support W ′, we say that W ′
is unsupported by W .

2.1 Differential Privacy

Differential privacy is a mathematical criterion of privacy that bounds the effect of any individual in
the dataset on the output of a mechanism by adding noise to the computation.
Definition 1. (Differential Privacy; [1, 2]) LetM : X → Y be a randomized mechanism. For any
neighboring datasets x, x′ that differ by at most one record, denoted x ∼ x′, and all measureable
subsets S ⊆ Y:

• if Pr(M(x) ∈ S) ≤ exp(ε) · Pr(M(x′) ∈ S) + δ, thenM satisfies (ε, δ)-approximate
differential privacy, denoted (ε, δ)-DP;

• if Dγ(M(x)||M(x′)) ≤ ργ for all γ ∈ (1,∞) where Dγ is the γ-Renyi diveregence
between distributionsM(x),M(x′), thenM satisfies ρ-zCDP.

While (ε, δ)-DP is a more common notion, it is often more convenient to work with zCDP. There
exists a conversion from zCDP to (ε, δ)-DP.
Proposition 1 (zCDP to DP Conversion; [3]). If mechanismM satisfies ρ-zCDP, thenM satisfies
(ε, δ)-DP for any ε > 0 and δ = minα>1

exp((α−1)(αρ−ε))
α−1

(
1− 1

α

)α
.

Next, we introduce two building block mechanisms. An important quantity in analyzing the privacy
of a mechanism is sensitivity. The Lp sensitivity of a function f : X → R is given by ∆p(f) =
maxx∼x′ ‖f(x)− f(x′)‖p. If f is clear from the context, we write ∆p.

Proposition 2 (zCDP of Gaussian mechanism; [2]). Let W be an m× n workload. Given dataset
x, the Gaussian mechanism adds i.i.d. Gaussian noise to Wx with scale parameter σ i.e.,M(x) =
Wx + σ∆2(W )N (0, I), where I is the m × m identity matrix. Then the Gaussian Mechanism
satisfies 1

2σ2 -zCDP.
Proposition 3 (zCDP of exponential mechanism; [4, 5]). Let ε > 0 and Scorer : X → R be a quality
score of candidate r ∈ R for dataset x. Then the exponential mechanism outputs a candidate r ∈ R
according to the following distribution: Pr(M(x) = r) ∝ exp

(
ε

2∆1
Scorer(x)

)
. The exponential

mechanism satisfies ε2

8 -zCDP.

2.2 Private Query Release

A general recipe for private query release is select-measure-reconstruct. To obtain answers to a target
workload Q, mechanisms following this recipe select both a workload M and a sufficient amount
of noise to satisfy a given level of privacy. Then the mechanism privately measures Mx with the
specified noise and derives answers to the target workload Q from noisy answers ỹ.

The Matrix Mechanism is a well-known instance of the above recipe [6–8]. Given a target
workload Q, the Matrix Mechanism selects both a strategy workload M supporting Q that min-
imizes expected workload error and Gaussian mechanism scaling parameter σ and measures
ỹ = Mx + σ∆2(M)N (0, I). From these noisy answers, the mechanism reconstructs answers
to Q by inferring a synthetic data vector M+ỹ, where M+ is the Moore-Penrose pseudoinverse of M ,
and computing QM+ỹ. Expected workload error is given by Errỹ(Q) = Eỹ[‖Qx−QM+ỹ‖2].

In this paper, we restrict our attention to query release mechanisms that conform to the above recipe
and use the pseudoinverse of the measured workload for the reconstruct step. Observe that using
the inferred synthetic data vector, we can reconstruct answers not just to supported queries but to
arbitrary linear queries. However, there are no known bounds on the expected workload error for
unsupported queries. For example, suppose M is the workload of all two-way marginals and Q is a
single three-way marginal workload. While Q is not supported by M , answers to Q can be inferred
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by QM+ỹ, but bounds on the expected error of these answers are not known. See Appendix B for a
description of workloads used thoughtout this paper.

3 Select-Measure-Estimate Bound (SMEB) Mechanism

To bound the expected workload error of the target workload, we introduce the Select-Measure-
Estimate Bound (SMEB) mechanism, presented in Algorithm 1. SMEB estimates an upper bound
β̂Q on workload error by spending a specified amount of the privacy budget.
Example 1. Suppose an analyst working under differential privacy wants to answer all two-
dimensional range queries (Q) for a given dataset and has already measured k queries from the
workload (M ). For answers to be useful to the analyst, the expected error for any given query is to
be at most η. By running SMEB, the analyst spends a proportion of her remaining privacy budget to
estimate a bound on workload error β̂q for q ∈ Q. If β̂q < η for all q, then the analyst can use the
derived answers to Q and save her remaining privacy budget.

SMEB utilizes the property that the target workload Q can be additively decomposed into two
workloads QM , QC , the first of which is supported by the measured workload M , and each can
be bounded independently. For QM , we derive a closed-form, data independent upper bound on
Errỹ(QM ) that is a corollary to a corresponding result from the Matrix Mechanism [7]. Since QC is
not supported by M in general, however, we introduce the candidate workload C, which supports
QC for any additive decomposition of Q. In practice, we choose C to be the smallest collection
of marginals such that C supports both M,Q. For instance, with Example 1, we choose C as all
two-way marginals.

Algorithm 1: Select-Measure-Estimate Bound (SMEB) Mechanism
Data: Data vector x, target workload Q, candidate workload C, measured workload M ,

measured workload answers ỹ, privacy budget ρ
Result: Bound estimates β̂Q
ε← 2

√
ρ

σ ←
√

1/ρ
select c∗ ∈ C using the exponential mechanism with budget ε and score function

ScoreW = ‖Wx−WM+ỹ‖2
measure c∗ using Gaussian noise: ã← c∗Tx+ σ∆2(c∗)N (0, I)
estimate β̂c ←

∥∥∥ã− c∗TM+ỹ
∥∥∥

2
+ 2∆1

ε log(|C|)
QM ← U∗M where:

U∗, V ∗ = arg min
U,V

‖V ‖1,1

s.t. Q = UM + V C

estimate β̂Q ←
√

∆2(QM )σ ‖QMM+‖F + β̂c ‖V ∗‖1,1

To bound QC , we run the exponential mechanism over the queries in C with workload error as
the score function to privately select the query c∗ ∈ C with approximately the highest workload
error. By privately measuring c∗ with Gaussian noise, we compute an unbiased estimate β̂C of
an upper bound on Errỹ(c) for all c ∈ C, similar to a technique used in [8]. By decomposing
queries in QC into linear combinations of queries in C and applying the β̂C bound, we obtain a
bound on Errỹ(QC). Summing the bounds for QC and QM yields a bound on Errỹ(Q). Note that
the additive decomposition above is arbitrary. As a heuristic, SMEB uses the decomposition that
minimizes the weight on the QC bound, since this bound uses worst-case estimates of the workload
error from queries in C. The resulting bound β̂Q is unbiased, since it is a linear transformation of an
unbiased estimate. Note that SMEB can be run without additional expendature of the privacy budget
for Q′ ⊆ Q such as bounding error for individual queries in Q. We utilize this fact in Section 4.

Let us demonstrate the formal properties of SMEB. Theorem 1 shows that SMEB satisfies differential
privacy, and Theorem 2 shows that β̂Q is an unbiased estimate of a valid upper bound βQ on the
expected workload error of Q. Proofs of these results are in Appendix A.
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Theorem 1. Algorithm 1 satifies ρ-zCDP.

Theorem 2. Let x,Q,C,M, c∗, ε, ỹ, ã be defined as in Algorithm 1 and suppose Q = QM +QC , C
supports Q,M , and M supports QM . Define βC , βQ as follows:

βc = Ec∗,ã,ỹ
[ ∥∥∥ã− c∗TM+ỹ

∥∥∥
2

]
+

2∆1

ε
log(|C|);βQ =

√
Var(b1)

∥∥QMM+
∥∥
F

+ βc ‖V ‖1,1

where ‖·‖F is the Frobenius norm and ‖·‖1,1 is sum of the absolute value over entries in the matrix.

Then QC = V C and Errỹ(Q) ≤ βQ. Moreover, β̂Q is an unbiased estimator of βQ where β̂Q is
obtained by replacing random values of βQ with observed values.

4 Experiments

To evaluate if SMEB outputs bounds that are sufficiently tight to be informative, we compare the per-
query error bounds output by SMEB with a baseline bound. The baseline is obtained by measuring
the workload error of each query in the target workload using Gaussian noise and taking the absolute
value. We compare these methods on the Titanic dataset with seven attributes, 1304 records, and
domain size 30618 [9]. The target workload is all two-dimensional range queries, the measured
workload is five randomly chosen two-dimensional range queries, and the candidate workload is all
two-way marginals.

(a) ε = 0.1 (b) ε = 0.32

Figure 1: Average % of per-query error bounds under threshold as a function of threshold over
five trials. The privacy budget is divided equally among the five measurement steps and the bound
estimation and satisfies (ε, δ)-DP for ε as given and δ = 1× 10−9.

The results in Figure 1 show that the bound obtained from SMEB is tighter than the baseline for
ε ≤ 0.32. At an error tolerance of 500 for ε = 0.32, approx. 38% of queries had a SMEB bound
under the threshold, while only 11% had a baseline bound under the threshold. The green line
represents the non-private error of deriving answers to the given query and serves as an upper bound
on performance in this experiment. This suggests that SMEB is better able to utilize a small privacy
budget than the baseline. Since the SMEB bound is stochastic, β̂q may not be a valid upper bound for
q ∈ Q. For ε = 0.1, 76.6% of bounds were valid, and, for ε = 0.32, 80.2% of bounds were valid.

5 Limitations and Future Work

SMEB shares many of the scalability limitations of the Matrix Mechanism. Both mechanisms require
workloads to be explicitly represented and operations such as the pseudoinverse to be computed.
Moreover, for large data domains, even materializing the data vector can be computationally taxing.
Approaches to improve the scalability of the Matrix Mechanism such as HDMM [10, 11] and
ResidualPlanner [12] utilize implicit Kronecker product representations of the workload. Future work
will be to utilize implicit workload representations to improve the scalability of SMEB.
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A Proofs

Let us introduce two properties of zCDP that are used in the proof of Theorem 1.
Proposition 4 (zCDP Properties [2, 5]). zCDP satisfies two properties of differential privacy:

1. (Adaptive Composition) LetM1 : X → Y1 satisfy ρ1-zCDP andM2 : X × Y1 → Y2

satisfy ρ2-zCDP. ThenM =M2(x,M1(x)) satisfies (ρ1 + ρ2)-zCDP.

2. (Postprocessing) Let M1 : X → Y satisfy ρ-zCDP and f : Y → Z be a randomized
algorithm. ThenM : X → Z = f ◦M1 satisfies ρ-zCDP.

Proof of Theorem 1.
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Proof. Recall that the exponential mechanism satisfies ε2

8 -zCDP and the Gaussian mechanism satis-

fies 1
2σ2 -zCDP. Then (2

√
ρ)2

8 = ρ
2 and 1

2(
√

1/ρ)2
= ρ

2 . By adaptive composition and postprocessing,

SMEB satisfies ρ
2 + ρ

2 = ρ-zCDP.

Let us prove Theorem 2 piecemeal over the following results.

Lemma 1. (Supported Workload Bound) Let M support W and ỹ = Mx+ b̃ where b̃ ∼ N (0, σ2I).
Then Eỹ[Wx−WM+Ỹ ] = 0 and

Errỹ(W ) ≤ σ
∥∥WM+

∥∥
F

where ‖·‖F is the Frobenius norm.

Proof. Since M supports W , W = UM for some U of appropriate dimension. Then

Wx−WM+ỹ = W −WM+(Mx+ b̃)

= UM − UMM+Mx−WM+b̃

= −WM+b̃.

Observe that UMM+M = M by properties of the Moore-Penrose pseudoinverse [13]. Applying
this result, we see that WM+ỹ is an unbiased estimator for Wx:

EỹWx−WM+ỹ = Eb̃[−WM+b̃]

= 0.

Let us now bound the workload error of W :

Errỹ(W ) = Eb̃
[( ∥∥∥WM+b̃

∥∥∥2

2

)1/2]
≤
(
Eb̃
[( ∥∥∥WM+b̃

∥∥∥2

2

)])1/2

=
(
Eb̃
[(

Σw∈W |wM+b̃|2
)])1/2

=
(
Σw∈WVar

(
wM+b̃

))1/2
=
(

Var(b̃1)Σw∈W
∥∥wM+

∥∥2

2

)1/2

= σ
∥∥WM+

∥∥
F
.

Note that the inequality follows from Jensen’s inequality.

Lemma 2. Let C supports W . Then W = V C and Errỹ(W ) ≤ Σij |vij |Errỹ(cj).

Proof. Since C supports W , W = V C. Let us bound the workload error of W :

Errỹ(W ) = Eỹ
[ ∥∥Wx−WM+ỹ

∥∥
2

]
= Eỹ

[ ∥∥V Cx− V CM+ỹ
∥∥

2

]
≤ ΣiEỹ

[ ∥∥viCx− viCM+ỹ
∥∥

2

]
≤ ΣijEỹ

[ ∥∥vijcTj x− vijcTj M+ỹ
∥∥

2

]
= Σij |vij |Errỹ(cj).

Note that both inequalities are applications of the Triangle inequality.

Lemma 3. (Workload Error Decomposition) Let W = WM +WC , C supports W,M , M support
WM , and ỹ = Mx+ b̃ where b̃ ∼ N (0, σ2I). Then WC = V C and

Errỹ(W ) ≤ σ
∥∥WMM

+
∥∥
F

+ Σij |vij |Errỹ(cj).
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Proof. Since C supports W,WM and WC = W −WM , C supports WC . Then WC = V C. Observe
that

Errỹ(W ) ≤ Errỹ(WM ) + Errỹ(WC)

≤ σ
∥∥WMM

+
∥∥
F

+ Σij |vij |Errỹ(cj).

The first inequality follows from the Triangle inequality and the second from Lemmas 1, 2.

It remains to bound Errỹ(c) for c ∈ C. Let us first prove a helpful lemma.

Lemma 4. Let a, b ∈ Rk, c = b+ z, z ∼ N(0, σ2)k. Then

Ez[‖a− c‖2] ≥ ‖a− b‖2 .

Proof. Let f(z) = ‖a− b− z‖2. Then f is a convex function of z. By Jensen’s inequality,
E[f(z)] ≥ f(E[z]). Since E[z] = 0 and f(0) = ‖a− b‖2, we obtain the desired result.

Theorem 3. (Candidate Workload Bound) Let x,C,M, c∗, ε, ỹ, ã be defined as in Algorithm 1.
Define

βc = Ec∗,ã,ỹ
[ ∥∥∥ã− c∗TM+ỹ

∥∥∥
2

]
+

2∆1

ε
log(|C|).

Then, for all c ∈ C, Errỹ(c) ≤ βc.

Proof. From the guarantees of the exponential mechanism, for all c ∈ C,

Ec∗ [Scorec∗ ] ≥ Scorec −
2∆1

ε
log(|C|). (1)

Recall that Scorec =
∥∥cTx− cTM+ỹ

∥∥
2
. Observe the following:

∥∥cTx− cTM+ỹ
∥∥

2
≤ Ec∗|ỹ

[ ∥∥c∗Tx− c∗TM+ỹ
∥∥

2

]
+

2∆1

ε
log(|C|)

≤ Ec∗,ã|ỹ
[ ∥∥ã− c∗TM+ỹ

∥∥
2

]
+

2∆1

ε
log(|C|).

The first inequality follows from (1) and the second from Lemma 4. Taking expectations with respect
to ỹ and applying iterated expectations to the RHS expectation, the desired result is obtained.

We can now put the above results together to derive a bound to the target workload Q.

Theorem 4. (Workload Error Bound) Let Q = QM +QC , C support Q,M , M support QM , and
x,C,M, c∗, ε, ỹ, ã be defined as in Algorithm 1. Define

βQ =
√

Var(b1)
∥∥QMM+

∥∥
F

+ βc ‖V ‖1,1

where ‖·‖1,1 is sum of the absolute value over entries in the matrix. ThenQC = V C andErrỹ(Q) ≤
βQ.

Finally, we show that the bound output by SMEB is unbiased.

Theorem 5. β̂Q is an unbiased estimator of βQ.

Proof. Since β̂C is calculated from a single sample from the distribution of βC , β̂C is an unbiased
estimator for βC . Moreover, β̂Q, βQ is obtained from a linear transformation of β̂C , βC , respectively.
Since the choice of the linear combination does not depend on the value of β̂C , β̂Q is an unbiased
estimator for βQ.
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B Workload Descriptions

Two broad classes of linear queries are marginal queries and range queries. The k-way marginal
query for attributes Xi1 , . . . , Xik with values di1 , . . . , dik ∈ Xi1 × · · · × Xik counts the number of
records such that Xij = dij , 1 ≤ j ≤ k. Such a query represents one entry in the histogram over
Xi1 , . . . , Xik . For attributes Xi1 , . . . , Xik , we refer to the collection of all k-way marginal queries
as the k-way marginal workload for Xi1 , . . . , Xik . The k-way marginal workload for Xi1 , . . . , Xik
computes the full histogram over these attributes. When the context is clear, we refer to a marginal
workload simply a marginal. Finally, the collection of all k-way marginals for data domain X
is referred to as the k-way marginal workload. The workload of all k-way marginals captures
correlations between k attributes.

Range queries are an extension of marginal queries in which attributes can each take any value
between a lower and upper boundary rather than a particular value. The one-dimensional range query
for attribute Xi with lower and upper boundaries dli, d

h
i counts the number of records where Xi takes

on values between dli, d
h
i . As with marginal queries, we can extend to a k-dimensional range query,

the workload of all k-dimensional range queries for a given collection of attributes, and the workload
of all k-dimensional range workloads for a given data domain X .
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